Skip to content

πŸ‘¨β€πŸ« Notes

Formulas for this lecture can be found in my paper formula sheets and online formula sheet.

Formulas for Reserves

The Fed decides how many dollars of reserves a bank is legally required to hold for every $100\$100 of deposits:

Dollarsβ€…β€Šofβ€…β€ŠRequiredβ€…β€ŠReserves=RΓ—Checkingβ€…β€ŠDeposits$200M=10%Γ—$2B\begin{aligned} Dollars \;of \;Required \;Reserves &= R \times Checking \;Deposits \\ \$200M &= 10\% \times \$2B \end{aligned}

Explanation: banks are legally required to hold reserves to help lessen bank runs and banking panics (like with SVB and the regional banks).

Both Vault Cash and Deposits at the Fed are readily available cash, so both count as legal reserves:

Totalβ€…β€ŠReserves=Vaultβ€…β€ŠCash+Depositsβ€…β€Šatβ€…β€Štheβ€…β€ŠFedTotal \;Reserves = Vault \;Cash + Deposits \;at \;the \;Fed

Explanation: The Federal Reserve is the Central Bank of the USA. Deposits at the Fed may also be called β€œDeposits at the Central Bank.”

If a bank holds more reserves than it is legally required to hold, these are called β€œExcess Reserves:β€œ

Excessβ€…β€ŠReserves=Totalβ€…β€ŠReservesβˆ’Requiredβ€…β€ŠReservesExcess \;Reserves = Total \;Reserves - Required \;Reserves

Formulas for Reserve Ratios:

Requiredβ€…β€ŠReserveβ€…β€ŠRatio=R=Dollarsβ€…β€Šofβ€…β€ŠRequiredβ€…β€ŠReservesCheckingβ€…β€ŠDepositsRequired \;Reserve \;Ratio = R = \frac{Dollars \;of \;Required \;Reserves}{Checking \;Deposits} Excessβ€…β€ŠReserveβ€…β€ŠRatio=E=Dollarsβ€…β€Šofβ€…β€ŠExcessβ€…β€ŠReservesCheckingβ€…β€ŠDepositsExcess \;Reserve \;Ratio = E = \frac{Dollars \;of \;Excess \;Reserves}{Checking \;Deposits} Totalβ€…β€ŠReserveβ€…β€ŠRatio=R+E=Dollarsβ€…β€Šofβ€…β€ŠTotalβ€…β€ŠReservesCheckingβ€…β€ŠDepositsTotal \;Reserve \;Ratio = R+E = \frac{Dollars \;of \;Total \;Reserves}{Checking \;Deposits}

Note: if Bruce simply provides β€œdeposits,” he is probably giving you β€œchecking deposits.” He’s not terribly interested in the distinction between checking and savings deposits.

Bank profitability and leverage

Profitability and Interest:

Profit=Ξ”ContractPriceΓ—ContractSize=($4.70βˆ’$4.50)Γ—5000=$1000\begin{aligned} Profit &= Ξ”ContractPrice \times ContractSize \\ &= (\$4.70-\$4.50)\times 5000 \\ &=\$1000 \end{aligned} Netβ€…β€ŠInterestβ€…β€ŠSpread=(interestβ€…β€Šrateβ€…β€Šearnedβ€…β€Šonβ€…β€Šassets)βˆ’(interestβ€…β€Šrateβ€…β€Špaidβ€…β€Šonβ€…β€Šliabilities)=7%βˆ’3%=4%\begin{aligned} Net \;Interest \;Spread &= (interest \;rate \;earned \;on \;assets) \\ & \quad - (interest \;rate \;paid \;on \;liabilities) \\ &= 7\% - 3\% = 4\% \end{aligned} Netβ€…β€Šinterestβ€…β€Šincome=(totalβ€…β€Šinterestβ€…β€Šreceivedβ€…β€Šonβ€…β€Šassets)βˆ’(totalβ€…β€Šinterestβ€…β€Špaymentsβ€…β€Šonβ€…β€Šliabilities)=$700Mβˆ’$200M=$500M\begin{aligned} Net \;interest \;income &= (total \;interest \;received \;on \;assets) \\ & \quad βˆ’ (total \;interest \;payments \;on \;liabilities) \\ &= \$700M - \$200M = \$500M \end{aligned} Netβ€…β€Šinterestβ€…β€Šmargin=Netβ€…β€Šinterestβ€…β€Šincomenetβ€…β€Šinterestβ€…β€Šearningβ€…β€Šassets=$500M$10B=5%\begin{aligned} Net \;interest \;margin &= \frac{Net \;interest \;income}{net \;interest \;earning \;assets} \\ &= \frac{\$500M}{\$10B} = 5\% \end{aligned}

Profitability Ratios:

Suppose Citizen’s bank has $200B\$200B of Assets, $180B\$180B of liabilities, $20B\$20B of Capital, and an annual profit after taxes of $2B\$2B:

ROA=Profitβ€…β€Šafterβ€…β€ŠtaxesAssets=$2B$200B=1%\begin{aligned} ROA &= \frac{Profit \;after \;taxes}{Assets} \\ &= \frac{\$2B}{\$200B} = 1\% \end{aligned}

Or, equivalently: Proftβ€…β€Šafterβ€…β€Štaxes=AssetsΓ—ROAProft \;after \;taxes = Assets \times ROA

ROE=Profitβ€…β€Šafterβ€…β€ŠtaxesCapital=$2B$20B=10%\begin{aligned} ROE &= \frac{Profit \;after \;taxes}{Capital} \\ &= \frac{\$2B}{\$20B} = 10\% \end{aligned}

Or, equivalently: Proftβ€…β€Šafterβ€…β€Štaxes=CapitalΓ—ROEProft \;after \;taxes = Capital \times ROE

Leverage=AssetsCapital=$200B$20B=10β€…β€Štoβ€…β€Š1\begin{aligned} Leverage &= \frac{Assets}{Capital} \\ &= \frac{\$200B}{\$20B} = 10 \;to \;1 \end{aligned} Debtβ€…β€ŠToβ€…β€ŠEquity=LiabilitiesCapital=$180B$20B=9β€…β€Štoβ€…β€Š1\begin{aligned} Debt \;To \;Equity &= \frac{Liabilities}{Capital} \\ &= \frac{\$180B}{\$20B} = 9 \;to \;1 \end{aligned} ROE=ROAΓ—LeverageROE = ROA \times Leverage Bankβ€…β€Šprofitβ€…β€Šorβ€…β€Šloss=Changeβ€…β€Šinβ€…β€ŠBankβ€…β€ŠCapitalBank \;profit \;or \;loss = Change \;in \;Bank \;Capital

The Money Multiplier

The first green equation says that you multiply reserves by the money multiplier to get total deposits.

  • You can also use the first equation with Open Market Operations
  • A variation to calculate the total deposits in the economy:
  • Totalβ€…β€ŠDepositsβ€…β€Šinβ€…β€Šeconomy=Reservesβ€…β€Šinβ€…β€ŠeconomyΓ—1R+ETotal \;Deposits \;in \;economy = Reserves \;in \;economy \times \frac{1}{R + E}

The second green equation follows from the definition of M1

Example: Suppose I walk in off of the street and deposit $10,000\$10,000

⚑There are no balance sheet categories other than those listed:

AssetsLiabilities + BC

100M Vault Cash

600M Deposits at Fed

5B Auto Loans

10B Mortgages

? Checking Deposits

4B of Other Liabilities

1B Bank Capital

Suppose R=0%R=0\%. What is EE?
Assets=100+600+5000+10000=$15.7BAssets=100+600+5000+10000= \$15.7B
Liabilitiesβ€…β€Šmustβ€…β€Šbeβ€…β€Š$15.7Bβˆ’$1B=$14.7BLiabilities \;must \;be \;\$15.7B - \$1B = \$14.7B
$10.7Bβ€…β€Šofβ€…β€ŠCheckingβ€…β€Šdeposits.\$10.7B \;of \;Checking \;deposits.

Assets: 15.7BLiabilities(14.7B) + BC(1B)

100M VC

600M DaF

5B Auto Loans

10B Mortgages

10.7B Deposits

4B of Other Liabilities

1B Bank Capital

$Reserves=VC+DaF=$100M+$600M=$700M\begin{aligned} \$Reserves &= VC + DaF \\ &= \$100M + \$600M \\ &= \$700M \end{aligned} R+E=$Totalβ€…β€ŠReserves$Checkingβ€…β€ŠDepositsR+E=.710.7=0.0654R+E=6.54\begin{aligned} R+E &= \frac{\$Total \;Reserves}{\$Checking \;Deposits} \\ R+E &= \frac{.7}{10.7}=0.0654 \\ R+E &= 6.54 \end{aligned}

R=0%R=0\%, so E=6.54%E=6.54\%

There are more questions like this here: ✏️ Balance Sheets Reserve Ratio Questions

⚑Revisit the above problem, assuming you don’t know R. What is the Money Multiplier? Hint: we know that MM=1R+EMM = \frac{1}{R+E}, so we only need to find R+ER+E to calculate the MMMM.

βœ” Totalβ€…β€ŠReserves=700MTotal \;Reserves = 700M
Deposits=10,700MDeposits = 10,700M
R+E=$TotalReservesDeposits=6.54%R+E =\frac{\$Total Reserves}{Deposits} = 6.54\%
MM=1R+E=16.54%=15.29MM = \frac{1}{R+E} = \frac{1}{6.54\%} = 15.29

⚑Suppose R=10%R=10\% and E=5%E=5\%. Given the following balance sheet, what are the deposits at the Fed?

AssetsLiabilities

200M VC

? Deposits at the Fed

5B Auto Loans

? other assets

$10B Checking Deposits

$4B Other Liabilities

? Bank Capital

βœ” We can’t use Assets=Liabilities+Bankβ€…β€ŠCapitalAssets=Liabilities+Bank\;Capital, because there are too many ’?β€˜s on in the balance sheet. However, we know R+ER+E and Deposits, so we can figure out the number of reserves.

R=10%R=10\% means that the government has required banks to hold 10%10\% of their deposits as reserves.

$Requiredβ€…β€ŠReserves=RΓ—Deposits=10%Γ—10B=$1Bβ€…β€Šofβ€…β€Šrequiredβ€…β€Šreserves.\begin{aligned} \$Required\;Reserves &= R \times Deposits \\ &= 10\% \times 10B \\ &= \$1B \;of \;required \;reserves. \end{aligned}

We also know that E=5%E=5\%. This means that the banks hold 5%5\% of their deposits as β€œextra reserves,” beyond the required reserve. The total dollar amount of excess reserves is:

$Excessβ€…β€ŠReserves=EΓ—Deposits=5%Γ—$10B=$.5B\begin{aligned} \$Excess \;Reserves &= E \times Deposits \\ &= 5\% \times \$10B = \$.5B \end{aligned}

Here is another way to approach it:

Totalβ€…β€ŠReserves=(R+E)Γ—DepositsTotal\;Reserves = (R+E) \times Deposits
R+E=15%R+E=15\%
R+E=Totalβ€…β€ŠReservesDepositsR+E = \frac{Total\;Reserves}{Deposits}

Therefore, this bank has $1B+$.5B=$1.5B\$1B + \$.5B = \$1.5B of reserves. If it has $200M\$200M of Vault Cash, how many deposits at the Fed does it have?

Totalβ€…β€ŠReserves=Vaultβ€…β€ŠCash+Depositsβ€…β€Šatβ€…β€ŠFed\begin{aligned} Total \;Reserves &= Vault \;Cash \\ & \quad + Deposits \;at \;Fed \end{aligned}

(Interpretation: Both Vault Cash and cash deposited at the Fed count as legal reserves.)

$1.5B=$200M+Depositsβ€…β€Šatβ€…β€Štheβ€…β€ŠFed\begin{aligned} \$1.5B &= \$200M \\ & \quad + Deposits \;at \;the \;Fed \end{aligned}

Depositsβ€…β€Šatβ€…β€ŠFed=$1.3BDeposits \;at \;Fed = \$1.3B
TotalReserves=(R+E)Γ—DepositsTotal Reserves = (R+E) \times Deposits